Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition

نویسندگان

  • Xiaobing Feng
  • Ohannes A. Karakashian
چکیده

Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discontinuous Galerkin methods indeed provide an efficient and viable alternative to the mixed finite element methods and nonconforming (plate) finite element methods for solving fourth order partial differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discontinuous Galerkin method for the Cahn-Hilliard equation

A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...

متن کامل

Local discontinuous Galerkin methods for the Cahn-Hilliard type equations

In this paper we develop local discontinuous Galerkin (LDG) methods for the fourth-order nonlinear Cahn-Hilliard equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and the numerical results illustrate the accuracy and capabili...

متن کامل

Analysis of Mixed Interior Penalty Discontinuous Galerkin Methods for the Cahn-Hilliard Equation and the Hele-Shaw Flow

This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn-Hilliard equation. Both methods use the backward Euler method for time discretization and interior penalty discontinuous Galerkin methods for spatial discretization. They differ from each other on how the nonlinear term is treated, one of them is bas...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria C0 Interior Penalty Discontinuous Galerkin approximation of a sixth order Cahn-Hilliard equation modeling microemulsification processes

Microemulsions can be modeled by an initial-boundary value problem for a sixth order Cahn-Hilliard equation. Introducing the chemical potential as a dual variable, a Ciarlet-Raviart type mixed formulation yields a system consisting of a linear second order evolutionary equation and a nonlinear fourth order equation. The spatial discretization is done by a C0 Interior Penalty Discontinuous Galer...

متن کامل

Unconditional Energy Stability Analysis of a Second Order Implicit-Explicit Local Discontinuous Galerkin Method for the Cahn-Hilliard Equation

Abstract In this article, we present a second-order in time implicit-explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn-Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn-Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn-Hilliard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007